
CSE 150A-250A AI: Probabilistic Models

Lecture 14
Fall 2025
Trevor Bonjour
Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

1 / 25



Agenda

Review

Reinforcement Learning

2 / 25



Review



EM algorithm for HMMs

• CPTs to re-estimate:

πi = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)︸ ︷︷ ︸

4 / 25



Forward-backward algorithm for inference in HMMs

• Summary of E-step:

P(St= i|o1, . . . ,oT) =
αit βit∑
j αjt βjt

P(St= i, St+1= j|o1, . . . ,oT) =
αit aij bj(ot+1)βj,t+1∑

k αkt βkt

5 / 25



EM algorithm for HMMs

• CPTs to re-estimate:

πi = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

πi ← P(S1= i|o1,o2, . . . ,oT)

aij ←
∑

t P(St+1= j, St= i|o1,o2, . . . ,oT)∑
t P(St= i|o1,o2, . . . ,oT)

bik ←
∑

t I(ot, k)P(St= i|o1,o2, . . . ,oT)∑
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

6 / 25



Time complexity of HMM computations

T length of observation sequence (o1,o2, . . . ,oT)
n cardinality of state space st ∈ {1, 2, . . . ,n}
m cardinality of observation space ot ∈ {1, 2, . . . ,m}

• All of the following computations are O(n2T):

(a) computing the likelihood P(o1,o2, . . . ,oT)

(b) decoding argmaxs1,...,sT P(s1, . . . , sT |o1, . . . ,oT)

(c) re-estimating {πi,aij,bik} by one update of EM

(d) updating beliefs P(St= i|o1, . . . ,ot) for T steps

7 / 25



Reinforcement Learning



Reinforcement learning (RL)

How can autonomous decision-making agents learn from
experience in the world?

 environment 

 agent 

 environment 

 agent 

 state st 
 reward rt 

 environment 

 agent 

 state st 
 reward rt 

 action at 

 environment 

 agent 

 state st 
 reward rt 

 action at 

Many applications:

• robot navigation
• game-playing AIs
• operations research

Agents are actors of any
kind: they can be embodied
in the physical world or em-
bedded in a virtual environ-
ment.

9 / 25



Challenges of RL

1. How to learn in noisy, uncertain environments?

2. How to learn from evaluative (versus instructive)
feedback?

3. When to explore, versus when to exploit?

4. How to learn from delayed (versus immediate) rewards?

5. How to navigate complex worlds with tractable models?

6. How to prove computational guarantees
(e.g., convergence, optimality, efficiency)?

10 / 25



A probabilistic framework for RL

 environment 

 agent 

 state st 
 reward rt 

 action at 

How do we formalize this process?
How do we handle uncertainty?

We define a Markov decision process.

11 / 25



Definition

A Markov decision process (MDP) is defined by the following:

• A state space S with states s ∈ S

• An action space A with actions a ∈ A

• Transition probabilities

P(s′|s,a) = P(St+1=s′|St=s,At=a)

that indicate, at any time t, how frequently an agent moves
from state s to state s′ after taking action a

• A reward function R(s, s′,a), providing immediate feedback
when the agent takes action a in state s and moves to state s′.

Rewards are scalar: the higher, the better.

MDP = {S,A,P(s′|s,a),R(s, s′,a)}

12 / 25



Markov assumptions

 environment 

 agent 

 state st 
 reward rt 

 action at 

1. Conditional independence

P(St+1=s′|St=s,At=a)

= P(St+1=s′|St=s,At=a, St−1,At−1, St−2,At−2, . . .)

2. Transition probabilities are constant over time:

P(St+1=s′|St=s,At=a) = P(St+1+τ =s′|St+τ =s,At+τ =a︸ ︷︷ ︸
shifted by τ

)

13 / 25



Simplifications for CSE 150A/250A

1. State space is discrete and finite: S = {1, 2, . . . , |S|}.

2. Action space is discrete and finite: A = {1, 2, . . . , |A|}.

3. Rewards depend only on the state: R(s, s′,a) = R(s).

4. Rewards are bounded: maxs |R(s)| <∞.

5. Rewards are deterministic.

MDP = {S,A,P(s′|s,a),R(s)}

14 / 25



Example: board games (with dice)

 environment 

 agent 

 state st 
 reward rt 

 action at 

s ∈ S board position and results of roll of dice

a ∈ A one of any allowed moves

R(s) =


+1 if agent wins the game
−1 if agent loses the game
0 for all preceding board positions

P(s′|s,a) ∼


agent moves
opponent rolls dice
opponent moves
agent rolls dice

15 / 25



Activity: Build & Train a Simple RL Agent (Nim)

The Game (Nim):

• Start with 6 objects
• On your turn, you can take 1 or 2 objects.
• Last person to take an object loses.

16 / 25



Training

During the game:

• Agent plays first. When it is the agent’s turn, draw a
slip from the correct state.

• Leave the drawn slip next to that state.

After the game ends:

• If the agent won: fold and put all drawn slips back
into their states.

• If the agent lost: discard the slip for the agent’s last
action. If a state would become empty, keep its last
slip and instead discard the slip from the previous
agent action. Return all earlier slips to their states.

Result: Eventually each cup keeps one slip: the AI’s
learned action for that state.

17 / 25



Decision-making in MDPs

• Definition

A policy π : S → A is a mapping of states to actions.
In this class we will only consider deterministic policies.

• Number of policies

If there are |A| possible actions in each of |S| states,
then there are combinatorially many policies:

# policies = |A||S|

• Experience under policy π

state s0
π(s0)

−−−−−−→ s1
π(s1)

−−−−−−→ s2 · · ·
reward r0 r1 r2 · · ·

Transitions occur with probabilities P(s′|s, π(s)). 18 / 25



How to measure long-term return?

1. Finite-horizon return

return =
1
T
(r0 + r1 + · · ·+ rT−1) for a T-step horizon

2. Undiscounted return with infinite horizon

return = lim
T→∞

[
1
T

T−1∑
t=0

rt

]

These are the most obvious ways to accumulate rewards.
But they are not the most commonly used in practice ...

19 / 25



How to measure long-term return? (con’t)

3. Discounted return with infinite horizon

Let γ ∈ [0, 1) denote the so-called discount factor.
Then define

return = r0 + γr1 + γ2r2 + γ3r3 + · · · =
∞∑
t=0

γtrt

When γ � 1, future rewards are heavily discounted.
These returns can be optimized by short-sighted agents.

When γ is close to 1, future rewards are lightly discounted.
These returns can only be optimized by far-sighted agents.

20 / 25



Motivation for γ ∈ [0, 1)

Psychologist: Why discount rewards from the distant future?
Economist: Why favor investments with short-term payoffs?

1. Intuition

Many models are only approximations to the real world;
we should not attempt to extrapolate them indefinitely.

2. Mathematical convenience

Discounted returns lead to simple iterative algorithms
with strong guarantees of convergence.

21 / 25



What to optimize?

The discounted return
∑∞

t=0 γ
trt is a random variable.

But we can try to optimize its expected value:

Eπ

[ ∞∑
t=0

γtR(st)
∣∣∣∣ s0=s

] the expected value of the
discounted infinite-horizon return,
starting in state s at time t=0,
and following policy π.

Maximizing the expected return is:
– generally wiser than maximizing the best-case return,
– but not as robust as minimizing the worst-case return.

22 / 25



Test your understanding

• Learning from experience in the world

 environment 

 agent 

 state st 
 reward rt 

 action at 

Which of the following is NOT part of the definition of an
MDP?

A. A set of states S with s ∈ S

B. Transition probabilities: P(s′|s) = P(St+1=s′|St=s)

C. An action space A with actions a ∈ A

D. Reward function R(S)

E. None of the above.
23 / 25



Test your understanding

When calculating the long-term value of a state sequence
over time, rewards for states in the near future count
more than rewards for states in the distant future.

True (A) or False (B)?

24 / 25



That’s all folks!

25 / 25


	Review
	Reinforcement Learning

